



# **Test Report Summary**

## HT04402

Latch Integrity Testing of Datamate L-Tek (M80 Series) Connectors

// HARWIN.COM



## 1. Introduction

#### 1.1. Description and Purpose

The Harwin L-Tek (M80 Series) connector is a 2mm pitch connector series, the following tests have been carried out using de-latching tools Z80-299 & T5746. Showing the durability of the latches over a number of operations when using either tool.

**NOTE**: Tool T5746 Is now obsolete and can no longer be purchased.

#### 1.2. Conclusion

The following data has been collated from Harwin test report 1132. These tests show that latches will still meet COO5 specification after 3 operations using tool T5746 and 8 operations using tool Z80-299.

#### 2. Test Method and Requirements

#### 2.1. Specification

CO05xx States that "when an unloaded female connector moulding is mated with a latched male connector, and a force of 20N is applied for 10 seconds in the directions shown in Figure 3, there shall be no failure of any part of the latch mechanism.



#### 2.2. List of Samples

The following pair of connectors were mated throughout the testing:

- M80-8671205 Datamate L-Tek male with locking latch, 12 contacts
- M80-8881205 Datamate L-Tek female, 10 contacts

## 2.3. Test Summary

Pull-apart destructive testing of 12-position male and female connectors with female contacts removed so they do not affect the results. Connectors were separated with de-latching tool and cycled.





## 2.3.1. Test for T5746 Separation Tool

<u>Methodology</u>: Pull-apart destructive testing of a 12 way latched connector, with the contacts removed from the female moulding. Connectors were cycled in increasing number of separations (up to 20) using tool T5746 to de-latch, then after each specified number of separations, the mated pair was then separated without using the de-latching tool.



#### Results:

| Separations | Minimum | Maximum | Average |
|-------------|---------|---------|---------|
| 1           | 39.5N   | 44.5N   | 42.0N   |
| 2           | 43.7N   | 43.0N   | 43.4N   |
| 3           | 35.6N   | 30.7N   | 33.2N   |
| 4           | 23.7N   | 20.3N   | 22.1N   |
| 5           | 22.2N   | 24.4N   | 23.3N   |
| 6           | 26.3N   | 20.2N   | 23.3N   |
| 7           | 23.4N   | 21.5N   | 22.9N   |
| 8           | 28.2N   | 22.9N   | 25.6N   |
| 9           | 21.1N   | 24.0N   | 22.6N   |
| 10          | 21.9N   | 22.1N   | 22.0N   |
| 15          | 22.9N   | 9.80N   | 16.4N   |
| 20          | 17.1N   | 17.3N   | 17.2N   |

The typical mode of failure was that the Latch locking feature broached through the plastic of the female moulding. The Male latch remained intact but slightly bent.

## 2.3.2. Test for T5746 Separation Tool

<u>Methodology</u>: Pull-apart destructive testing of a 12 way latched connector, with the contacts removed from the female moulding. Connectors were cycled in increasing number of separations (up to 15) using tool Z80-299 to de-latch, then after each specified number of separations, the mated pair was then separated without using the de-latching tool.



<u>Results:</u>

| Separations | Minimum | Maximum | Average |
|-------------|---------|---------|---------|
| 1           | 32.0N   | 41.5N   | 36.8N   |
| 2           | 13.0N   | 42.3N   | 27.8N   |
| 3           | 44.1N   | 33.9N   | 39.0N   |
| 4           | 43.3N   | 31.5N   | 37.4N   |
| 5           | 28.9N   | 24.2N   | 26.6N   |
| 6           | 22.8N   | 24.0N   | 23.9N   |
| 7           | 23.9N   | 29.6N   | 26.8N   |
| 8           | 23.0N   | 20.0N   | 21.5N   |
| 9           | 18.8N   | 21.7N   | 20.3N   |
| 10          | 24.6N   | 16.6N   | 20.6N   |
| 15          | 13.4N   | 14.3N   | 13.9N   |

The typical mode of failure was that the Latch locking feature broached through the plastic of the female moulding. The Male latch remained intact but slightly bent.